Development of a Next-generation Antimicrobial Wound Dressing.

نویسندگان

  • Daniel Metcalf
  • David Parsons
  • I Philip Bowler
چکیده

Delayed wound healing due to infection is a burden on healthcare systems, and the patient and caregiver alike. An emerging factor in infection and delayed healing is the presence development of biofilm in wounds. Biofilm is communities of microorganisms, protected by an extracellular matrix of slime in the wound, which can tolerate host defences and applied antimicrobials such as antibiotics or antimicrobial dressings. A growing evidence base exists suggesting that biofilm exists in a majority of chronic wounds, and can be a precursor to infection while causing delayed healing itself. In vivo models have demonstrated that the inflammatory, granulation and epithelialization processes of normal wound healing are impaired by biofilm presence. The challenge in the development of a new antimicrobial wound dressing was to make standard antimicrobial agents more effective against biofilm, and this was answered following extensive biofilm research and testing. A combination of metal chelator, surfactant and pH control displayed highly synergistic anti-biofilm action with 1.2% ionic silver in a carboxymethylcellulose dressing. Its effectiveness was challenged and proven in complex in vitro and in vivo wound biofilm models, followed by clinical safety and performance demonstrations in a 42-patient study and 113 clinical evaluations. Post-market surveillance was conducted on the commercially available dressing, and in a 112-case evaluation, the dressing was shown to effectively manage exudate and suspected biofilm while shifting difficult-to-heal wounds onto healing trajectories, after an average of 4 weeks of new dressing use in otherwise standard wound care protocols. This was accompanied by a low frequency of dressing related adverse events. In a second evaluation, clinical signs of infection and wound dimension data, before and after the evaluations, were also available. Following an average of 5.4 weeks of dressing use, all signs of clinical infection were reduced, from an average frequency of 36% to 21%. An average of 62% wound size reduction was achieved, with 90% of wounds reducing in size and 10 wounds healing completely. The new clinical evidence for this next-generation antimicrobial wound dressing suggests it is safe and effective at managing exudate, infection and biofilm, while it can shift established, stubborn wounds onto healing trajectories. The scientific rationale for this new dressing technology is supported by in vitro and in vivo evidence, so now further comparative, randomized and outcome-based clinical studies are required to fully understand the clinical and economic benefits this new dressing technology can bring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-IPN Films and Electrospun Nanofibers Based On Chitosan/PVA as an Antibacterial Wound Dressing

The antimicrobial activity of a wound dressing is a key factor for preventing and treating wound infection. The current study evaluated the physiochemical properties and antimicrobial activities of semi-IPNs (interpenetrating polymer networks) based on chitosan/polyvinyl alcohol (PVA) films and nanofibers as candidates for wound dressings and investigated the effects of morphologies (nanofibrou...

متن کامل

New Chitosan/Poly(ethylene oxide)/Thyme Nanofiber Prepared by Electrospinning Method for Antimicrobial Wound Dressing

A new natural and environmental friendly wound dressing was introduced for the first time that was prepared by electrospinning method. This new wound dressing has chitosan base, and poly (ethylene oxide) was added as co-spinning agent to improve spinnability of chitosan. Moreover, thyme extract as a natural antibacterial additive was introduced in the as electrospun nanofibers scaffold in order...

متن کامل

Semi-IPN Films and Electrospun Nanofibers Based On Chitosan/PVA as an Antibacterial Wound Dressing

The antimicrobial activity of a wound dressing is a key factor for preventing and treating wound infection. The current study evaluated the physiochemical properties and antimicrobial activities of semi-IPNs (interpenetrating polymer networks) based on chitosan/polyvinyl alcohol (PVA) films and nanofibers as candidates for wound dressings and investigated the effects of morphologies (nanofibrou...

متن کامل

Optimizing of Nonwoven Fabric Properties Using Nano-bio Materials for the Wound Dressing Application

Introduction: In addition to its protective role, dressings not only prevent infection, but also accelerate wound healing process. In this study, the influence of optimizing the properties of the calendered needle-punched nonwoven fabrics using the finishing materials of Honey, Aloe Vera, Chitosan and Nano Argentum Nitrate for the end-usage as dressing has been investigated. Methods: The prepa...

متن کامل

Measuring the microbiome of chronic wounds with use of a topical antimicrobial dressing – A feasibility study

BACKGROUND Polymicrobial communities colonize all wounds, and biofilms are hypothesized to be a key link to the chronic state and stalled healing. Molecular methods offer greater insight when studying microbial ecology in chronic wounds, as only a small fraction of wound bacteria are cultured by currently available methods and studies have shown little agreement between culture and molecular ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta medica Croatica : casopis Hravatske akademije medicinskih znanosti

دوره 70 1  شماره 

صفحات  -

تاریخ انتشار 2016